Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers.
نویسندگان
چکیده
Two Myb-related transcription factors, Myb305 and Myb340, are expressed specifically in flowers of Antirrhinum. The proteins are structurally very similar throughout their DNA binding domains, implying that they bind to common target motifs. This binding has been demonstrated experimentally. Myb305 has been shown to activate the gene encoding the first enzyme of phenylpropanoid metabolism, phenylalanine ammonia-lyase. We show that Myb340 can also activate transcription from the phenylalanine ammonia-lyase gene promoter and that both transcription factors can activate two other genes involved in flavonoid metabolism, thereby linking early and later steps in plant secondary metabolism. Myb340 is a stronger activator than Myb305, but relatively more Myb305 than Myb340 protein is able to bind to target promoters when both proteins are synthesized in yeast or Escherichia coli, probably as a result of inhibition of Myb340 binding by phosphorylation. This means that Myb305 can compete with Myb340 to reduce its effective transcriptional activation when both transcription factors are expressed in the same cell. This competitive interaction has been demonstrated in plant cells. Expression patterns determined by in situ hybridization showed that the two transcription factors are expressed within the same cells of the flower and imply that the detailed specializations in function of these two apparently redundant transcription factors may be used to provide gears that adjust the rate of induction of secondary metabolism to floral development.
منابع مشابه
A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes.
Synthesis of flavonoid pigments in flowers requires the co-ordinated expression of genes encoding enzymes in th phenylpropanoid biosynthetic pathway. Some cis-elements involved in the transcriptional control of these genes have been defined. We report binding of petal-specific activities from tobacco and Antirrhinum majus (snapdragon) to an element conserved in promoters of phenylpropanoid bios...
متن کاملA small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum.
The Rosea1, Rosea2, and Venosa genes encode MYB-related transcription factors active in the flowers of Antirrhinum majus. Analysis of mutant phenotypes shows that these genes control the intensity and pattern of magenta anthocyanin pigmentation in flowers. Despite the structural similarity of these regulatory proteins, they influence the expression of target genes encoding the enzymes of anthoc...
متن کاملExpression patterns of myb genes from Antirrhinum flowers.
Six genes that contain sequence encoding the DNA binding domain of the Myb oncoproteins have been isolated from a cDNA library prepared from Antirrhinum majus (snapdragon) flowers using oligonucleotide probes directed against part of this domain. The derived amino acid sequences of these genes reveal acidic domains in their carboxy termini, suggesting that they might act as transcriptional acti...
متن کاملIsolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers
Flavonoids are one of the major plant pigments for flower colour. Not only coloured anthocyanins, but also co-pigment flavones or flavonols, accumulate in flowers. To study the regulation of early flavonoid biosynthesis, two R2R3-MYB transcription factors, GtMYBP3 and GtMYBP4, were identified from the petals of Japanese gentian (Gentiana triflora). Phylogenetic analysis showed that these two pr...
متن کاملCombinatorial interactions of MYB and bHLH in flavonoid biosynthesis and their function in plants
MYB and basic helix-loop-helix (bHLH) are two important transcription factor (TF) families found in plants and animals. MYB-bHLH interactions control multiple enzymatic steps in flavonoid (anthocyanin and proanthocyanidin) biosynthesis pathway in plants. Moreover, they play roles in trichome and root hair formation, activation of vacuolar acidification, phytochrome A signaling, glucosinolate bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 8 9 شماره
صفحات -
تاریخ انتشار 1996